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NUMERICAL SIMULATION OF GAS DYNAMICS IN A BUBBLE
DURING ITS COLLAPSE WITH THE FORMATION OF SHOCK WAVES

A. A. Aganin and M. A. II’'gamov UDC 534.2:532

The specific features of calculation of a gas in a spherical bubble located in the center of a
spherical volume of weakly compressible fluid are considered. The problems of motion of a cold
gas to a point and a spherical piston converging to a point are used to evaluate the algorithm. It
is shown that significant errors can arise in calculation of spherical waves in the vicinity of the
pole. These errors can be substantially reduced by means of artificial viscosity in the Riemann
problem.

Introduction. The problems of dynamics of a gas bubble in a fluid are usually addressed in studying
the effect of cavitation on objects located in a fluid flow [1-3]. However, they are also of interest in connection
with the phenomenon of one-bubble sonoluminescence [4], which is very promising for the development of
physics and chemistry [5].

Until recently, in most models the expansion-compression of a gas in a bubble was assumed to be
uniform, and the fluid surrounding the bubble was assumed to be incompressible or weakly compressible [1-3,
6-8]. These models work well as long as the bubble surface velocity remains subsonic. Otherwise, shock waves
appear in the bubble, and the bubble dynamics becomes significantly different. A calculation with the use of
hydrodynamic equations for modeling the gaseous medium of the bubble was performed for the first time by
Wu and Roberts {9]. The fluid around the bubble was described in the same way as in models that lead to
the Rayleigh-Plesset type equation. A similar approach was used by other authors [10, 11]. Moss et al. [12]
used numerical integration of hydrodynamic equations both for the gas and for the fluid. At the same time,
even the calculation of one oscillation requires significant computer time if one does not use simplifications
taking into account the specific features of the solution behavior in space and time.

Numerical integration of gas-dynamic equations was performed by the Lax-Friedrichs method [9],
using the software system DYNA2D [12], and also by solving the Riemann problem [10, 11]. The accuracy of
the numerical solution depends to a large extent on how accurately this solution describes the shock waves
converging to the pole, their interaction in the pole, and the shock waves diverging from this pole, which
result from this interaction. This problem is not discussed in [9, 10, 12]. The specific features of numerical
simulation of gas dynamics in a bubble during its collapse with the formation of shock waves are considered
in the present paper on the basis of solving the Riemann problem. The problems of motion of a cold gas to a
point and a spherical piston converging to a point are used to evaluate the algorithm.

Formulation of the Problem and Method of Solution. We consider gas dynamics in a spherical
bubble located in the center of a spherical volume of a fluid. On the external side of this bubble, we specify
the pressure

Pex(t) = p° — Apey sin (wt), (1)

where p° is the mean pressure, Apex and w are the amplitude and frequency of oscillations, and ¢ is the time.
At t < 0 the bubble and the fluid are at rest.
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The gaseous medium in the bubble is described by the system of equations for a perfect gas with the
van der Waals equation of state
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Here r is the radial coordinate, p is the pressure, u is the velocity, p is the density, € and E are the specific
internal (per unit mass) and total (per unit volume) energies, b = 1/pmax (pmax is the maximum possible
value of the gas density), and v is the ratio of specific heats. The motion of the interface is described by the
equation [9]

rb_d't_‘" gug = :—?(pb"Pex)'*‘;;‘iT}‘gt‘(pb“Pex)‘*“lV 1:_:7 (3)
where r, is the bubble radius, u; is the velocity of the bubble surface, pof and c[} are the density and speed
of sound in the fluid, pp = p(rp — 0,t) is the pressure on the bubble surface on the side of the gas, and v
is the kinematic viscosity. It is assumed that for ¢t = 0 we have p(r,0) = p°, p(r,0) = p° u(r,0) = 0, and
0<r<g rg = r3(0) (p° and p° are the initial undisturbed values of the gas pressure and density in the bubble).

The algorithm of solving problem (1)-(3) is based on the use of mixed Eulerian-Lagrangian coordinates
£ and 7. Substituting the variables ¢t = 7 and r = r(7,£), we transform system (2) to

(qrz.]),- + (frz)f =2rJs,

where g = (p, pu, E)t, f = q(u—7;)+(0,p,pu)t, s = (0,p,0)!, and J = 9r/d¢ is the Jacobian of mapping; here
and below the superscript t denotes transposition and the subscripts 7 and £ indicate the partial derivatives
d/dr and 8/0¢€.

In calculations, the time axis is divided into layers 7* (n =0, 1, 2,...), 7% = 0, and 7"*! = 7" + Ar™.
At the time 7", the computational grid consists of the cells [r;‘_1/2,r?+1/2], rf'+1/2 = r(§i+1/2,r"), r;‘/z =0,
and 17, j2 = rp(7™), where i = 1,1, (I is the number of cells in the computational grid). The gas-dynamic
parameters within one cell are assumed to be constant.

Let the values of the solution parameters in the cells at the layer 7® be known. Their calculation at
the layer 7+! begins with calculation of the pressure PT41 /2 3t the outer boundary of the gas bubble. This is
done by using the relations of the problem of a flat piston moving into a tube (u} < u}) and out of the tube
(uf > u}) with the velocity u7,,/, = uf [11], the undisturbed parameters inside the tube being equal to their

values in the Ith cell. After that we calculate the position of the outer boundary r}‘i’ll 2= T /2 +Ar"u} /20

determine the coordinates of the internal nodes of the computational grid r:‘_:'ll/z using a prescribed law,

calculate the velocities of the nodes (rr)f,,/, = (r;'_i'_*'ll/2 - r:-‘_+11/2) /Ar", and calculate the mass, momentum,
and total energy of the cells that refer to the later 7"*! using the finite-difference scheme:

(gr?Ar)i* — (gr’Ar);

Arn

Here (ab)? = a2¥?, (ANE = [0 — (ry o1/, Flaape = F@ap) o7 = s(al), Dy =
(riae + Ariprge)® = (1712 (BBrig1p), Ariyyy = (u = )7 o7, 77 = 05(Finyye + Tigaye),
Fiy1/2 = [(rz)}'+1/2]1/2, and Ar} = Ti1/2 — Tioijg- To calculate the gas-dynamic parameters 7', ; /5, U419,
etc., which refer to the cell boundary, we solve the Riemann problem for a discontinuity formed by different

values of the parameters in the cells i and ¢ + 1. The sought values are the solution of this problem at the
point r?_:'ll/z.

+(fr* 12— (f’”z)?—m = 277 Ar{'s].

The calculation at the layer 77! is finished by determining the velocity of the outer boundary of the
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bubble ug"'l in accordance with Eq. (3). Prior to each next step, we determine its magnitude

Ar?

mj :
1i<t {maX(lu?_l/z —(rr) },

AT" = a¢
et C?-1/z|, |“?+1/2 - (T'f)?+1/2 - C?+1/2D

where ac is the Courant number and cf, , /2 is the local speed of sound.

Solution of the Problem of Motion of a Cold Gas to a Point [3]. At t = 0, a uniform gas with
the parameters p° and p® = 0 moves to the pole of a spherical system of coordinates with the velocity u? < 0,
which is equal everywhere. We have to find the distribution of the parameters along r for ¢ > 0. The structure
of the solution is such that for t > 0 there are two zones separated by a shock wave propagating from the pole
with a constant velocity D > 0. The values of the parameters at the interface obey the Hugoniot relations,
and at an infinitely distant boundary we have p(co,t) = p°, p(co,t) = 0, and u(oco,t) = u®. For the equation
of state p = (7 — 1)pe, the solution has the form

e=(u"?/2, p=p°(1-u"/D), u=0 for r< Dt
e=0, p=p"(1-u’/D)?, u=u’ for r> Dt

where D = —(y — 1)u®/2.

The calculation results obtained on a uniform moving grid are shown in Fig. 1. This is a spatial
distribution of the parameters at the time ¢ = 0.6. The following input data are used in the problem: v = 5/3,
=1, u% = —1, and a¢ = 0.356. The computational domain for ¢ = 0 is the interval 0 < r < 1. The motion
of the grid is determined by the displacement of the right boundary with the velocity 4. Curves 1 refer to
the analytical solution, and curves 2 and 3 show the numerical solution (curves 2 were obtained on a grid of
100 cells, curves 3 on a grid of 200 cells).

The calculated curves for pressure (and velocity) are in good agreement with the analytical data. At
the same time, there is a significant difference in density (and internal energy) near the pole. For example,
the density in the cells adjacent to the pole, which was obtained on a grid of 100 cells, exceeds the exact value
by more than a factor of 3.5.

The numerical solution of this problem by another difference method is discussed {13}, where the
calculated profile of density near the pole deviates strongly from the exact value, but downwards rather than
upwards, as in Fig. 1. To improve the agreement with the exact solution, Noh [13] proposes to decrease the
numerical viscosity and introduce an artificial heat flux. Taking into account the behavior of the calculated
density profiles in Fig. 1 obtained without artificial viscosity, we can expect that the introduction of artificial
viscosity is quite reasonable.

Various variants of artificial viscosity were tested. The best results were obtained using the modification
of the second equation of system (2)

Aor*s) B + pr?)
ot or

= 2pr +2r(7"7 — 7%9),
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where k, is a dimensionless coeflicient and [ is a parameter with the dimension of length. Passing to the mixed
Eulerian-Lagrangian variables, we obtain

(pur®J)r + [priu(u — ;) + prlle = 2rdp 4 2rJ (777 — 79¥),

1
1 k,0)2%p = f <0,
oo mop(Lug - Y)W for e
0 for ug > 0.
In the numerical realization, we accept
(777 — PO = 2/;}( 1 Au® — ﬂ) pk = (k A,-T.')Zp'.‘ 1 Au®
i } ) AT‘:' t rn H 1 (o 1 1 Ar}‘ 19

1

where Au} = ul, /2 —ul /2" The optimal values of the coefficient k, were chosen in the course of calculations.

Figure 2 shows the calculation results obtained on a grid of 100 cells for kﬁ = 0.067 (the remaining
parameters are the same as in Fig. 1). The introduction of terms with artificial viscosity made the numerical
solution much closer to the analytical result. The character of the curves is also different: when approaching
the pole, the density decreases (the internal energy increases). The calculations show that the decrease in
density and the increase in internal energy near the pole become more significant as k, increases. Note that
closer agreement between the numerical and analytical solutions can be achieved by using an artificial heat
fAux {11].

Solution of the Problem of a Spherical Piston Converging to a Point. At ¢ < 0 the spherical
piston is at rest at the point r = r®. A perfect gas with the parameters =, p, and ¢, which is enclosed inside
the volume limited by the piston, is also at rest (u® = 0). It is assumed that p = (v — 1)pe. At ¢t = 0 the
piston instantaneously starts its motion toward the pole with a constant velocity u, < 0. A shock wave arises
near the piston, and the shock-wave strength increases as it approaches the pole. Being focused at the pole,
the shock wave reflects from it and propagates in the opposite direction.

When there is a converging or diverging shock wave in a small vicinity of the pole, this problem has a
self-similar character [14]. Prior to focusing of the converging shock wave in this region, we have

fu] ~ r’(l/ﬁ“l), p=const, p~ r'z(]/ﬂ_l), £~ 7,—2(1//3—1)’ (4)
where f is a factor of self-similarity. For v = 1.4, we have p*/p? = 20.1 and 3 = 0.7172 (p* is the gas density
behind the shock-wave front at the time of its focusing). In addition [9], p3/p] = 2.3 (p] and p} are the gas

densities in front of and behind the front of the diverging shock wave).
Figure 3 shows the spatial distributions of the parameters for the following input data: v = 1.4, p° = 1,
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& =1, u, = =0.5, kﬁ = 0.067, and ac = 0.35 (< is the undisturbed speed of sound). At the initial time
t = 0, the computational domain 0 < r < 1 was covered by a computational grid of 800 cells, which condensed
toward the pole in accordance with the geometric progression. The size of the cell adjacent to the pole was
5-1075. The Lagrangian coordinate system was used (r, = u).

The calculated curves in Fig. 3 refer to the time t; & 0.5928775 close to the moment of shock-wave
focusing in the pole (curves 1) and three times soon after the focusing: t; = 0.5928889, t3 = 0.5929008, and
t4 = 0.5929147 (curves 2-4). Curves 5 are plotted for the time ¢; in accordance with Egs. (4). A scale factor
was used to construct the pressure curve. This factor was calculated on the basis of the numerical solution at
the center of one of the computational cells (at the point r ~ 3.89 - 10~*). The following criteria were used
to choose the appropriate cell: 1) the cell was located behind the shock-wave front; 2) the cell was as close to
the pole as possible; 3) the density in this cell was found in the region p = const.

The agreement between the numerical and analytical curves at the time t; is quite satisfactory. The
disagreement on the left of the point of their intersection is explained by numerical smearing of the shock-wave
front, and the discrepancy on the right of this point is related to the fact that the solution of the problem
deviates more and more from the self-similar result with increasing distance from the shock-wave front. For
density curves at the times ¢3-t4 at the shock-wave front, the ratio p3/p} is roughly equal for all curves and
amounts to 2.2, which is also in good agreement with the value of 2.3 [9]. The increase in density and the
decrease in internal energy, which is not plotted in Fig. 3, described in the previous problem are observed near
the pole. These effects are reduced by using artificial viscosity. Special calculations for choosing the optimal
coeflicients of artificial viscosity k, were not performed in this problem.

Gas Dynamics During the Collapse of a Bubble Located in a Weakly Compressible Fluid.
The problem was solved for the following input data: v = 1.4, r§ = 4.5 - 107% m, u) = 0, T° = 300 K,
k2 = 0.067, p° = 1.01 - 10° Pa, ¢} = 1500 m/sec, p% = 967.95 kg/m?, v = 0.7-107° m?/sec, and w =
27 - 26.5 kHz. The temperature T was calculated from the relation T = (1/p—b)p/R', where b = 1/794 m®/kg
and R' = 287 J/(kg-K). To estimate the influence of different methods of solution, the initial values were
chosen close to those used by Wu and Roberts [9].

For comparison, we use the results for this problem calculated under the assumption that the gas
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expansion—compression in the bubble occurs uniformly. In this case, we have
O0r/,.043 3 3 3y—- 0 3
p=p((r3)° = @] =)™, a=ri(pfb)"/°. (5)

Figure 4 shows the time dependence of the bubble radius r; within the interval 0 < ¢ < 25 usec. The
solutions of Eq. (3) together with relation (5) and system (2) coincide in the graph. In the initial stage, when
the bubble radius increases to its maximum value rj n, (expansion phase), the solutions coincide within the
framework of both formulations; therefore, to decrease the computer time, the calculation in this interval
is performed on a grid consisting of two cells with an equal size at ¢ = 0. The calculation is performed in
the Lagrangian coordinates (rr = u), ac = 0.12. When the bubble radius reaches the maximum value, a
conservative interpolation of the solution to a new uniform grid consisting of 370 cells is performed.

In the solution of Eq. (3) together with (5), the maximum value of the bubble radius 7} pax = 35.91 gm
is reached at ¢t = 16.606 usec; at this moment, p ~ 16.46 Pa, p ~ 0.0023 kg/m?, and T ~ 24.8 K. The minimum
value of the bubble radius 7} pi, = 0.566 um is reached at ¢ = 20.229175 usec; at this moment, p ~ 41-108 Pa,
p =~ 590.1 kg/m3, and T ~ 6214 K.

In the solution of Eq. (3) together with system (2), 7y min = 0.5465 um is reached at ¢ = 20.211275
psec. At the center of the bubble we have p ~ 82.47 - 108 Pa, p ~ 32.88 kg/m?, and T ~ 837655 K.

Figure 5 shows the spatial distributions of the gas parameters for 15 times: t; = 20.211+t; (k =1, 15),
where ] & 0.241, 15 & 0.243, t3 = 0.250, ¢} = 0.252, t; = 0.257, t; =~ 0.360, t7 =~ 0.390, t3 ~ 0.410, t3 ~ 0.430,
tio =~ 0.450, t]; = 0.455, t], ~ 0.470, tj; ~ 0.490, t], = 0.520, and t}; ~ 0.560 (i} is the parameter that
specifies the time step in microseconds). The curve numbered by k corresponds to the time ¢;.

As the bubble radius decreases from 7 pax t0 7% min, the velocity of its surface and the gas particles
inside the bubble increases more and more and becomes supersonic inside the bubble at ¢ & 20.2112 usec at
the point r & 0.3 um. The surpassing of the local speed of sound gives rise to a shock wave whose strength
rapidly increases when approaching the pole (curves 1-3). At the time t3, the shock wave is located in the
immediate vicinity of the pole. During the shock-wave focusing, the pressure, velocity, and temperature behind
the front are limited in calculations because of the finite size of the computational cells; the value of density
is limited by constraints imposed by the van der Waals equation of state.

After the focusing of the converging shock wave in the pole, a diverging shock wave arises, which
propagates in the opposite direction to the bubble surface (curves 4-6). In the vicinity of the pole (r < 0.05
pm), the gas remains strongly heated, and the density in this region is lower than in the periphery.

In the interval ts < ¢ < t7, the shock wave interacts with the bubble surface, which results in the
appearance of an expansion wave moving away from the interface between the phases (curves 7 and 8). As
the expansion wave moves to the pole, the second shock wave arises (curves 9 and 10). After its focusing in
the pole, the second diverging shock wave appears, which propagates to the outer boundary of the bubble
(curves 11-15).

The appearance and propagation of the converging and diverging shock waves within the time interval
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t; <t < tg are repeated to a large extent within the interval ¢7 < ¢ < ¢35. At the same time, the changes in
the gaseous medium of the bubble, which took place within the interval ¢; < ¢t < t, make the shock waves
much weaker in the second case.

Figure 6 shows the spatial distributions of the parameters for ¢ =~ 22.18149 usec, when the intense
processes of bubble collapse are completed. The pressure is constant (0.41 - 10° Pa), but great changes in
density and temperature are observed: within the range r < 2 um, the density decreases and the temperature
increases. This behavior of the parameters is explained by irreversible processes that occur in passing of the
shock waves.

The results in Figs. 4 and 5 agree qualitatively with the data [9]. As a whole, we obtain a reasonable
description of the shock waves, which are clearly visible in the graphs of spatial distributions of the parameters
(see Fig. 5). The temperature curves (see Fig. 6) have a weakly noticeable decrease at the point near the pole,
the corresponding peak in the density profiles cannot be distinguished because of the scale used. This behavior
is the manifestation of the numerical effects considered above in the problem of motion of a cold gas to a
point. These effects could be substantially reduced by using artificial viscosity.

Conclusion. The specific features of numerical simulation of gas dynamics in a bubble in the phase of
its collapse with the formation of shock waves are considered. The problems of motion of a cold gas to a point
and a spherical piston converging to a point are used to evaluate the algorithm. In the first problem, it is
shown that significant errors can arise in the vicinity of the pole if special measures are not taken. These errors
can be substantially reduced by means of artificial viscosity in the Riemann problem. In the second problem,
the self-similar regime is reached, which verifies the correctness of the numerical solution. The problem of
gas dynamics in a bubble during its collapse in a weakly compressible fluid has been considered. Qualitative
agreement of the results obtained with the known solution is observed. The errors of the numerical solution
near the pole are significantly reduced by using artificial viscosity.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01-
00484).
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